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Convergent margins, being the boundaries between colliding lithospheric plates, form the most disastrous areas
in the world due to intensive, strong seismicity and volcanism.We review global geophysical data in order to il-
lustrate the effects of the plate tectonic processes at convergent margins on the crustal and upper mantle struc-
ture, seismicity, and geometry of subducting slab. We present global maps of free-air and Bouguer gravity
anomalies, heat flow, seismicity, seismic Vs anomalies in the upper mantle, and plate convergence rate, as well
as 20 profiles across different convergent margins. A global analysis of these data for three types of convergent
margins, formed by ocean–ocean, ocean–continent, and continent–continent collisions, allows us to recognize
the following patterns. (1) Plate convergence rate depends on the type of convergent margins and it is signifi-
cantly larger when, at least, one of the plates is oceanic. However, the oldest oceanic plate in the Pacific ocean
has the smallest convergence rate. (2) The presence of an oceanic plate is, in general, required for generation
of high-magnitude (M N 8.0) earthquakes and for generating intermediate and deep seismicity along the conver-
gent margins. When oceanic slabs subduct beneath a continent, a gap in the seismogenic zone exists at
depths between ca. 250 km and 500 km. Given that the seismogenic zone terminates at ca. 200 km depth in
case of continent–continent collision, we propose oceanic origin of subducting slabs beneath the Zagros, the
Pamir, and the Vrancea zone. (3) Dip angle of the subducting slab in continent–ocean collision does not correlate
neither with the age of subducting oceanic slab, nor with the convergence rate. For ocean–ocean subduction,
clear trends are recognized: steeply dipping slabs are characteristic of young subducting plates and of oceanic
plates with high convergence rate, with slab rotation towards a near-vertical dip angle at depths below ca.
500 km at very high convergence rate. (4) Local isostasy is not satisfied at the convergent margins as evidenced
by strong free air gravity anomalies of positive and negative signs. However, near-isostatic equilibrium may exist
in broad zones of distributed deformation such as Tibet. (5) No systematic patterns are recognized in heat flow
data due to strong heterogeneity ofmeasured valueswhich are strongly affected by hydrothermal circulation, mag-
matic activity, crustal faulting, horizontal heat transfer, and also due to low number of heat flow measurements
across many margins. (6) Low upper mantle Vs seismic velocities beneath the convergent margins are restricted
to the upper 150 km and may be related to mantle wedge melting which is confined to shallow mantle levels.

© 2015 Published by Elsevier B.V. on behalf of International Association for Gondwana Research.
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Fig. 1. Global distribution of convergent margins of different types. Topography and bathymetry based on ETOPO1 (Amante and Eakins, 2009).

Fig. 2. Sketches of three major types of convergent margins.

Fig. 3. Profiles across the convergent margins (illustrated in Fig. 4). See Table 1 for details.
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Table 1
Major characteristics of convergent margins discussed in text.

Profile in
Fig. 3

Location Tectonic setting Type of conv.
margin

Convergence
rate (cm/y)a

Subduction angle,
sub-Moho (deg)b

Subduction
angle, deep
(deg)b

Age of subducting
oceanic plate (Ma)

Seismicity range
(km)

WNA Western North America The Cascadia subduction zone: the oceanic Juan de Fuca and Gorda Plates
subduct beneath the continental North American plate; further south it
forms the zone of orogeny within the Western USA

OC, PBZ 2.3 – – 10 Crustal

SA1 South America-Andes The oceanic Nazca Plate subducts beneath the continental South American
Plate along the Peru–Chile Trench

OC 6.8 13 70 25 b200, 515–650
SA2 7.2 30 ? 40 b290, 580–610
SA3 7.4 13 ? 35 b200, 575–620
AS South Atlantics-Sandwich The oceanic South American Plate subducts beneath the South

Sandwich Plate (composed of oceanic lithosphere with continental
fragments), forming the South Sandwich Trench

OO or OC 5.7 40 ? 70 b170, 270–310

CA Pacific Central America The oceanic Cocos Plate subducts under the Caribbean Plate and forms the
Middle America Trench

CO 7.8 ? ? 15 b95, 205

PAE, North Pacific, the Aleutians The oceanic Pacific Plate subducts under the continental segment of the
North American Plate along the Aleutian Trench (PAE); further west, the
Pacific Plate subducts under the oceanic segment of the North American
Plate (PAW)

OC 6.6 11 90 55 b230

PJ West Pacific (PJ = Japan,
PK = Kamchatka)

The oceanic Pacific plate subducts beneath the continental Amurian and
Okhotsk Plates (parts of the Eurasian Plate) at the Japan and Kuril
Trenches

OC 9.4 23 32 130 b230, 310–410
PK OC 8.1 40 65 100 b190, 310, 490,

610–660
PR West Pacific, Ryukyu The oceanic Philippine Sea Plate subducts beneath the continental

Eurasian Plate at the Ryukyu Trench
OC 7.9 53 – 50 b250

PM West Pacific, Mariana The oceanic Pacific Plate subducts under the oceanic Philippine Sea Plate
at the Mariana Trench

OO 2.7 27 70 160 b260, 310, 410–610

SP West Pacific, Philippines The continental Sunda Plate subducts under the Philippine Mobile Belt at
the Negros and the Cotabato Trenches, while the continental Eurasian
Plate subducts under the Philippine Mobile Belt at the Manila Trench. On
the eastern side of the Philippines, the direction of subduction reverses:
the oceanic Philippine Sea Plate subducts under the Philippine Mobile Belt
at the Philippine and East Luzon Trenches

CC or OC 10.0 36 75 50 b160, 220–240,
525–615

SJ1 Indian ocean, Sunda-Java The oceanic Indo-Australian Plate subducts beneath the continental Sunda
Plate along the Sunda Trench

OC 4.8 25 ? 50 b235, 585
SJ2 4.9 25 90 130 b185, 520–640
NZS New Zealand (NZS

= South Island;
NZN = North Island)

South-west of New Zealand: the Indo-Australian Plate subducts
under the oceanic Pacific Plate (NZS). North-east of New Zealand the
direction of subduction reverses: the oceanic Pacific Plate subducts
under the Indo-Australian Plate (note that E–W are flipped on profile
NSN in Fig. 10).

OC? 3.4 ? ? 65 b50, 100
NZN OO 7.2 43 74 95 0–650

PC Pacific, New Caledonia The oceanic Indo-Australian Plate subducts beneath the oceanic
Pacific Plate

OO 9.2 50 85 20 b340

EAG Mediterranean Europe
(EAG = Gibraltar arc–
Pyrenees; EAH = Hellenic
arc–Carpathians)

Broad band of diffuse deformation caused by the collision of the
continental African and Eurasian Plates, with numerous subduction zones
and the orogenic belt that extends from the Atlantic coast through the
Mediterranean region (Alps, Carpathians, Pyrenees, Apennines, Dinarides,
Atlas, Balkans, Caucasus) to Zagros and Anatolia. Profile EAG crosses the
Gibraltar arc and the Pyrenees. In some parts of the Mediterranean Sea,
oceanic lithosphere subducts under the continental Eurasian Plate (the
Hellenic arc, profile EAH, which further crosses the Vrancea zone in the
Carpathians).

PBZ 0.5 – – – Crustal, 600
EAH CC 1.0 13 51 200? b180

TH Tibet-Himalayas-Central
Asia

Broad band of diffuse deformation caused by the collision of the
continental Indian and Eurasian Plates, which includes the Himalayas,
Tibet (under which the Indian Plate subducts under the Eurasian Plate),
the orogenic belts of the Central Asia and the Indonesian Archipelago

PBZ, CC 4.6 – – – Crustal

a Convergence rate is based on MORVEL plate velocity model (DeMets et al., 2010).
b Subduction dip is calculated from the geometry of the seismogenic zone (Fig. 4).
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1. Introduction

Convergent boundaries, together with divergent and transform
boundaries, form three major types of boundaries between the litho-
spheric plates (Figs. 1, 2). Given that most disastrous tectonic activity,
expressed in seismicity and volcanism, is associated with the conver-
gent boundaries along oceanic margins, they are also termed active
margins; however active margins do not include all of the convergent
boundaries. Due to strong tectonic activity and associated geohazards,
Fig. 4. Twenty profiles across different types of convergentmargins (see Fig. 3 for locations), wh
Eakins, 2009), (ii) free air (based on EGM2008, Pavlis et al., 2012) and (iii) Bouguer gravity ano
the profiles, based on ISC-GEM catalogue, Storchak et al., 2013), (v) heat flow (based on comp
175 km (based on tomography model of Schaeffer and Lebedev, 2013). To simplify compariso
on the top and vertical lines mark the position of the convergent boundaries (trenches) (in fe
from right to left). Slabs are outlined based on seismicity, dip angle is indicated at seismicity p
vertical and horizontal scales. Index on the top marks the type of convergent margin (OO= oc
rate, bcodeN refers to profile label in Fig. 3 and Table 1).
active margins have been a focus of numerous studies and dedicated
research programs. Collisional orogens associated with convergent
boundaries further host numerousmineral resources and, being impor-
tant from economic perspective, are a focus of academic and industry
studies (e.g. UNESCO Project 600).

Convergent margins are defined as boundaries between the collid-
ing lithospheric plates. Depending on the nature of the plates, three
types of convergent margins are commonly recognized (Figs. 1–2):
ocean–ocean, continent–ocean, and continent–continent. The two latter
ich show from top to bottom: (i) variations in topography (based on ETOPO1, Amante and
malies, (iv) depth toMoho and seismicity (Mw N 4.0, within a 400 km-wide corridor along
ilation of IHFC, 2011), and (vi) upper mantle Vs velocity at depths of 75 km, 125 km, and
ns, all profiles are presented with the subduction direction from left to right. Red arrows
w cases of several subductions along a profile, blue arrows mark the subduction directed
lots as calculated for the depth range marked by black arrows. All profiles have the same
ean–ocean, CO= continent–ocean, CC= continent–continent, the number–convergence

Image of Fig. 4


Fig. 4 (continued).
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Image of Fig. 4


Fig. 4 (continued).
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types, in particular continent–continent collision, often form a zone of
distributed deformationwithin the continental interior (plate boundary
zone, PBZ). In some cases, convergent boundaries may form a zone of
Table 2
Key references to convergent margins discussed in text.

Location Selected key references

Western North America Green et al. (1986), Hyndman et al. (1990), Treh
Madsen et al. (2006), Bostock (2013)

South America (the Andes) ANCORP Working Group (1999), Yuan et al. (200
Audet et al. (2009)

South Atlantics (the Sandwich arc) Larter et al. (2003), Li et al. (2008), Dalziel et al.
Pacific Central America Johnston and Thorkelson (1997), Zelt et al. (1999

Grevemeyer et al. (2007), Kim et al. (2010)
North Pacific (the Aleutians) Holbrook et al. (1999), Gorbatov et al. (2000), Li

Rondenay et al. (2008)
West Pacific (Japan, Kamchatka) Suyehiro et al. (1996), Taira et al. (1998), Levin e
West Pacific (the Ryukyu arc) Park et al. (1998), Font et al. (2001), Lallemand e
West Pacific (the Mariana arc) Nagumo et al. (1981), Widiyantoro et al. (1999),

Contreras-Reyes et al. (2011), Stratford et al. (20
West Pacific (the Philippines) Kodaira et al. (2000), McIntosh et al. (2005), Nish
Indian ocean (Sunda-Java) Kopp et al. (2011), Hall and Spakman (2002), Re

(2011), Shulgin et al. (2009, 2011, 2013)
New Zealand (NZS = South Island;
NZN = North Island)

NZS: Eberhart‐Phillips and Bannister, 2002; Okaya
NZN: Stern et al., 1987; Eberhart‐Phillips and Reyn

South-west Pacific (New Caledonia) Pascal et al. (1973), Aitchison et al. (1995), Lagab
Mediterranean Europe (the Gibraltar
arc–Pyrenees; the Hellenic
arc–Carpathians–Alps)

Spakman et al. (1988), Platt and Vissers (1989),
Wortel and Spakman (2000), Vacher and Souriau
Starostenko et al. (2013), Bokelmann and Rodler

Tibet, Himalayas, the Central Asia Stauffer (1993), Kosarev et al. (1999), Zhao et al
(2006), Zhang et al. (2012)
diffuse deformation where the plate boundary is not clearly expressed
(Zatman et al., 2004). Some convergent margins may be dormant,
such as the speculative plate boundary across Siberia, which starts at
u et al. (1994), Calvert (1996), Brocher et al. (2003), Nicholson et al. (2005),

0), Schurr et al. (2006), Gilbert et al. (2006), Contreras-Reyes et al. (2008),

(2013)
), Götze and Krause (2002), Rogers et al. (2002), Trenkamp et al. (2002),

zarralde et al. (2002), Eberhart-Philips et al. (2006), Jicha et al. (2006),

t al. (2002), Jiang et al. (2009), Nakanishi et al. (2009), Nakamura et al. (2014)
t al. (2001), McIntosh et al. (2005), Chou et al. (2009), Wu et al. (2009)
Kárason and Van Der Hilst (2000), Calvert et al. (2008), Takahashi et al. (2008),
15)
izawa et al. (2007), Hirose et al. (2008), Matsubara et al. (2008), Eakin et al. (2014)

plumaz et al. (2004), Wagner et al. (2007), Spakman and Hall (2010), Lüschen et al.

et al., 2002; Van Avendonk et al., 2004; Fry et al., 2014
ers, 1999; Reyners et al., 2006; Stern et al., 2015
rielle et al. (2005), Fichtner et al. (2010)
Spakman et al. (1993), Houseman and Molnar (1997), Mezcua and Rueda (1997),
(2001), Lippitsch et al. (2003), Brückl et al. (2007), Souriau et al. (2008),
(2014), Levander et al. (2014), Morais et al. (2015), Qorbani et al. (2015)
. (2001), Kind et al. (2002), Tilmann et al. (2003), Wittlinger et al. (2004), Yao et al.

Image of Fig. 4


Fig. 5. Age of the ocean floor (based on Mueller et al., 2008). Black lines — profiles across the convergent margins discussed in the text (Table 1).
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the Laptev sea of the Arctic shelf in the north and terminates at the
Okhotsk sea in the south and separates the Siberian craton from the
Verkhoyansk Fold Belt.

The present study provides a global comparative overview of con-
vergent margins of the three types, without discussing specific details
for any of the margins. Our motivation is to recognize major character-
istics for each of the convergent margin types, based on the analysis of
topography/bathymetry, gravity, heat flow, crustal structure, seismic
structure of the mantle, seismicity patterns, slab dip angle, and plate
convergence rate. We discuss global patterns and illustrate our analysis
by a set of global maps for these parameters. We also present 20 geo-
physical cross-sections across different types of convergent margins
world-wide (see Fig. 3 for locations); theirmajor characteristics are pre-
sented in Table 1 and are illustrated in Fig. 4. For details on particular
Fig. 6. Depth to Moho (based on EUNAseis (Artemieva and Thybo, 2013) and SibCrust (Cherep
et al., 2013)). For oceans the map shows crustal thickness plus bathymetry; for continents— c
convergent boundaries readers are referred to regional studies with
key references listed in Table 2; their overview is outside the scope of
this paper (with the vast literature on the topic (e.g. Schellart and
Rawlinson, 2010), such an overview cannot fit journal page limits).

2. Tectonic and topographic expression of convergent boundaries

All three types of convergent margins are associated with subduc-
tion zones. In case of ocean–ocean subduction, it is the older oceanic
platewith colder and thicker lithosphere that subducts beneath younger
and lighter oceanic plate (Fig. 5). An illustration of this pattern is the
subduction of the old oceanic Pacific Plate under the young oceanic
Philippine Sea Plate at the Mariana Trench (PM in Fig. 5). In case of
continent–ocean collision, the oceanic plate subducts beneath the
anova et al., 2013) regional crustal models for Eurasia and on CRUST 1.0 elsewhere (Laske
rustal thickness minus topography.

Image of Fig. 5
Image of Fig. 6
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continental plate such as along the Pacific margin of South America, due
to significant differences in density structure of oceanic and continental
lithosphere caused by differences in crustal thicknesses (Figs. 2, 6), aver-
age crustal densities, and lithosphere buoyancies.

In case of continent–continent collision, it is also the heavier litho-
spheric plate that should subside. Given compositional differences in
the structure of iron-depleted cratonic and fertile Phanerozoic litho-
spheric mantle, ancient lithosphere is lighter and thus more difficult
to subduct (Sizova et al., 2010). In some rare cases, the presence of a
subducting slab beneath modern collisional orogens is not imaged by
geophysical data (e.g. the Caucasus, Sarker and Abers, 1998) or instead
the presence of a delaminated lithospheric block (the Vrancea zone in
the Carpathians, the Gibraltar arc in the Alboran sea) is proposed
based on seismic and gravity data (Sperner et al., 2001; Molnar and
Houseman, 2004; Lorinczi and Houseman, 2009; Levander et al.,
2014). Similarly, lithosphere delamination has been proposed for
other continent–continent collisional zones such as the southern Puna
plateau of the Andes (Kay and Kay, 1993), Tibet (Turner et al., 1993;
Fig. 7.Convergence rate (a) anddirection (b) across different convergentmargins for 140 locatio
et al., 2010); (c) statistical distribution of convergence rate across the convergent margins o
distribution. Convergence direction in (b) is shown both by color coding and by arrows.
England and Molnar, 1997) and Himalaya (England and Houseman,
1989).

Plate boundary zones form only when continental plates are in-
volved, and are mostly common when two continental plates collide
(four examples are shown in Fig. 4). Series of subduction zones may
be associated with broad zones of lithosphere deformation, such as in
the Mediterranean region (Carminati et al., 2012; Zhu et al., 2012) and
in the orogenic belt of the Central Asia (Sengör and Natal'in, 1996;
Xiao et al., 2013), where seismic tomography images also the presence
of paleoslabs in the upper mantle (Van der Voo et al., 1999a,b). Paleo-
subductions may also be responsible for significant seismic anisotropy
with the dipping fast axis, such as observed in the upper mantle of
central Europe (Babuska and Plomerova, 2006).

Topographic evolution during collision of lithospheric plates
depends on the nature of the plates: oceanic or continental. When an
oceanic plate is involved in plate collision, ocean trenches are formed
on the side of the subducting oceanic plate (Fig. 2ab and examples in
Fig. 4). Mantle melting in the wedge above the subducting slab, in the
ns shown by color dots (the values are based on theMORVEL plate velocitymodel, DeMets
f different types for locations shown by color dots in (a, b). Lines — best fit for Gaussian

Image of Fig. 7


Fig. 7 (continued).

12 I.M. Artemieva et al. / Gondwana Research 33 (2016) 4–23
presence of water released by the downgoing slab, produces a chain of
volcanoes (volcanic arc). This is the tectonic setting where most of the
andesitic continental crust is thought to be generated (Kushiro, 1974),
although the details of this process are still debated (Kay and Kay,
1993; Rudnick, 1995; Jagoutz and Behn, 2013).

Orogens form only when continental plates are involved. Basaltic
magmas generated bymantle wedge melting pond at the crust–mantle
boundary producing a high-velocity lower-crustal layer (magmatic
underplating) observed in many modern and paleo-collisional settings,
and similar processes in oceanic island arcs may be the primary mecha-
nism for the production of continental crust (Thybo and Artemieva,
2013).Magmaascend through the crust in the formof sills andmagmat-
ic intrusions, the geometry of which is essentially controlled by crustal
rheology (Gerya and Burg, 2007), increases crustal volume and leads
to formation of crustal roots typical of the collisional orogens (Fischer,
2002; Artemieva and Meissner, 2012). In case of continent–continent
collision, deep foreland basins are formed in front of mountain chains
(Fig. 2c). The deepest known from seismic surveys is more than 8–
10 km deep (e.g. the Caucasus foredeep, the Aquitaine basin along the
northern edge of the Pyrenees) (ECORS Pyrenees Team, 1988;
Artemieva and Thybo, 2013).

3. Convergence rate

We use the MORVEL plate velocity model (DeMets et al., 2010) to
assess the convergence rate at ca. 300 locations along the convergent
margins and to analyze if the convergence rate depends on the type of
lithospheric plates involved in convergence (Fig. 7). The analysis indi-
cates that usually the continent–continent convergent margins have a
significantly smaller convergence rate than the margins where one of
the plates is oceanic (Fig. 7c). The smallest values of convergence
(b30 mm/y) are characteristic of broad plate boundary zones (Fig. 7a).

There are no systematic patterns when oceanic plates are involved
into convergence. Statistical analysis demonstrates that a broad range
of convergence rates is characteristic of both ocean–ocean and ocean–
continent collisional settings. The peaks in the Gaussian distributions
are at the same rate value (ca. 62 mm/y), which approximately corre-
sponds to the median value of the convergence rate worldwide
(Fig. 7c). The convergence rate appears to be controlled by (i) the litho-
spheric plate itself (plate size, lithosphere structure, including its rheol-
ogy and thickness), (ii) the structure (size and lithosphere structure)
and motion (direction and speed) of the adjacent plates, as well as
(iii) by dynamics of the underlying mantle (direction of convective
flow in the mantle, mantle viscosity, plumes, etc.).

It is, however, remarkable, that the oldest oceanic plate in the Pacific
ocean has the smallest convergence rate. This observationmay question
the role of subduction pull in plate movement (Forsyth and Uyeda,
1975). Ideally subduction pull would be strongest for the oldest, coldest
plates due to their strong temperature difference to the surrounding
mantle. However, taking metamorphic reactions in the downgoing
plate into account, we find that the extra negative buoyancy force on
the old plates may lose its importance from the depths where main
metamorphic reactions take place, and where younger plates will gain
density contrast with the surrounding mantle similar to the old plates.

4. Seismicity at convergent margins

Subducting lithospheric slabs is the cause of seismicity at convergent
margins (Fig. 8ab). In contrast to the transform and constructive mar-
gins where seismicity is generally low- and intermediate-magnitude,
the convergent margins generate the strongest earthquakes. With
very few exceptions, high-magnitude (M N 8.0) earthquakes all require
the presence of an oceanic plate (Fig. 8a), and such strong earthquakes
can rarely be generated at continent–continent collisions, where seis-
mic magnitude usually is less than 7.5–7.8. The strongest earthquakes
seem to be associated with the continent–ocean collision zones.

Continent–continent collisions are manifested by broad zones of
shallow (b200 km) seismicity which marks plate boundary zones.
Termination of seismicity below ca. 200 km depth (Fig. 9) may mark
the depth extent of the continental lithosphere involved in continent–
continent collisions. However, most seismicity is restricted to the
crust, the number of events at the sub-Moho depth is small, and, in
contrast to oceanic subduction zones, they rarely form linear belts of
progressive deepening of epicenters with distance from the collision
plane (Fig. 8b).

The only exceptions are the Zagros mountains in southern Iran and
the Pamir mountains at the western end of the Himalayas, where inter-
mediate depth seismicity is common. The presence of a subducting slab
beneath the Zagros orogen, which formed in association with the
closure of the Tethys ocean during the collision of Eurasia and Arabia,
has been imaged by seismic tomography (Alinaghi et al., 2007; Agard
et al., 2011); the presence of two ophiolite belts parallel to the strike
of the orogen (Moghadam and Stern, 2011) suggests oceanic origin of
the slab. The presence of the downgoing slab beneath the Pamir has
been proposed by a number of studies; it generates seismicity down
to ca. 350 km depth and has a steep dip of ca. 70–90°. However, the
origin of this slab (subduction of the Eurasian plate beneath the Pamir
(Burtman and Molnar, 1993) or subduction of the detached Indian
oceanic plate beneath the Hindu Kush (Koulakov and Sobolev, 2006))
is still a subject of debate. The pattern of seismicity in the Pamir is alike
seismicity in the Vrancea zone of the Carpathians, where a seismogenic
body with ca. 30 km × 70 km lateral extent dips at a near-vertical

Image of Fig. 7


Fig. 8.Global distribution of seismicity: (a)withM N 6.0, color-coded according tomagnitude (based onNGDCdata for 1949–1996 and ISC-GEMdata for 1900–2011, Storchak et al., 2013);
(b) by depth (dots of three colors) with indication of major plates.
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angle down to ca. 200 km depth (Fig. 10a), and a high-velocity body
extending down to ca. 350 kmdepth has been imaged by seismic tomog-
raphy (Wortel and Spakman, 2000; Bokelmann and Rodler, 2014).
Similar to the Pamir, the geodynamic origin of this body is debated,
and variousmodels involving either descending relic oceanic lithosphere
of the Tethys ocean (Csontos, 1995;Wortel and Spakman, 2000) or con-
tinental lithosphere (attached, detached or delaminated) (Knapp et al.,
2005; Lorinczi andHouseman, 2009) have been proposed. Our analysis
of seismicity patterns at different types of convergent margins
(Fig. 10bc) suggests that the presence of an oceanic plate is a pre-
condition for generating intermediate and deep seismicity. We there-
fore favor oceanic origin of subducting slabs beneath the Zagros, the
Pamir, and the Vrancea zone.

Deep seismicity (N300 km) requires the involvement of an oceanic
plate, and from the first glimpse there is no principal difference between
the depth distribution of seismicity at ocean–ocean and ocean–continent
convergent margins (Fig. 9b). Characteristic of a subducting oceanic slab
is zonal pattern of the epicentral depths, which deepen away from the
plate boundary. Such pattern is clearly seen for the Andes and for the sub-
duction zones along the western margin of the Pacific ocean (Fig. 8b).

A detailed analysis of depth distribution of seismicity in subducting
oceanic slabs shows a remarkable pattern (Fig. 10),with a sharp distinc-
tion between ocean–ocean and continent–ocean convergent margins.
When two oceanic plates collide, the downgoing slab preserves its
integrity down to the mantle transition zone and, in some cases, even
across the transition zone (Figs. 4 and 10b). In sharp contrast, oceanic
slab subducting beneath a continent is not seismogenic at depths be-
tween 200–300 km and 500–600 km (Fig. 10c). The dip of subduction
is usually different in theupper and lower parts; it becomes significantly
steeper within or below the transition zone, where it becomes near-
vertical.

5. Dip angle of subduction

Numerous studies that tried to link the dip angle of subduction
to various parameters have demonstrated that there is no unique

Image of Fig. 8


Fig. 9. Seismicity distribution with depth (based on ISC-GEM catalogue, Storchak et al., 2013). Seismic events calculated within 200 km-wide corridors along the profiles in Figs. 3 and 4.
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dependence and a number of factorsmay control subduction dip (Hayes
et al., 2012). Themost important are the relative velocity of the converg-
ing plates and the negative buoyancy force of the descending slab
(Yokokura, 1981); although the overridingplatemay have an important
feedback on the dynamics of subduction (Capitanio et al., 2010). Nu-
merical analysis with account for the thermal structure of subducting
plates with finite length has shown that long slabs that have penetrated
the mantle transition zone are unstable and rotate towards steeper dip
angles (Hsui et al., 1990). It is consistent with the pattern observed in
Fig. 10c.

Our analysis indicates that, in case of continent–ocean subduction,
there is no correlation between the dip angle, on the one side, and the
age of subducting oceanic slab (hence, its thermal structure) and the
convergence rate, on the other side (Fig. 11). We also do not find any
correlation between the dips of subduction at the shallow (sub-Moho)
depth and below a 200 km depth, although with no exception the dip
increases from shallow mantle to the transition zone (Fig. 11a).

Although our analysis includes only 4 profiles across ocean–ocean
convergence (Figs. 3, 4), the results demonstrate a strong control of
the thermal structure of the descending slab (controlled by the age of
subducting oceanic plate) and the relative velocity of the converging
oceanic plates on subduction dip:

• old oceanic plates with thick lithosphere subduct at more shallow
angle than young oceanic plates (Fig. 11b) which may be contrary to
expectations (e.g. Uyeda and Kanamori, 1979);

• oceanic plates with high convergence rate produce steep dipping
slabs (Fig. 11c); and

• at very high convergence rate, at depths below ca. 500 km the
downgoing slab rotates towards a near-vertical dip angle (Fig. 11d).

6. Gravity anomalies

We present three maps for gravity anomalies (Fig. 12) constrained
by the high-resolution EGM2008 global gravity model (Pavlis et al.,
2012): free-air anomaly, horizontal gradient of the free-air anomaly,
and Bouguer anomaly. Themaps and profiles illustrate the fundamental
difference between the density structure of continents with near-zero
Bouguer anomalies (except for orogenic environments) and of oceans
with large positive Bouguer anomalies.

Strong free-air anomalies of, in pairs, positive and negative signs
demonstrate that local isostasy is not satisfied at the convergent
margins. Ocean trenches at ocean–ocean and continent–ocean conver-
gent margins are usually marked by a strong peak of positive free air
anomalies (+50 + 200 mGal), with a narrow belt of strong negative
anomalies (−100–300 mGal) parallel to the trench on the side of the
downgoing slab (Figs. 4, 12a). In collisional orogens, the strongest
anomalies are localized to the marginal parts of plate boundary zones,
where subducting slabs are present. Positive free-air anomalies in
zones of continent–continent collision (Fig. 4) imply that these plate
boundary zones are undercompensated and will sink if external stress
is removed, in particular along the Himalayan to Alpine orogen that
formed after closure of the Tethys ocean. An exception is the Tibet,
where free-air anomalies are close to zero. It suggests that the Tibetan
plateau is nearly compensated and a strong density anomaly should be
present within the lithospheric mantle, giving support to the hypothesis
of crustal/lithospheric doubling below Tibet.

The map of horizontal gradient of the free-air anomaly (Fig. 12b)
shows mainly anomalies at the active (destructive and constructive)
plate boundaries, with the strongest anomalies across the convergent
margins, whereas the constructive plate boundaries (along mid-ocean
ridges) are observed as weak anomalies.

The maximal amplitude of gradient of free-air anomalies is across
convergent margins with involvement of oceanic plates. In continent–
ocean collisions, the zone of high gradient free-air anomalies is usually
broader than in case of ocean–ocean convergence, and it is very wide
in plate boundary zones. A number of paleoconvergent margins (such
as theUrals) are clearlymarked by a large gradient of free-air anomalies.
In other places, however, similar linear belts of large gravity gradients
are associated not with convergent margins but with magmatic intru-
sions (hotspot tracks, the East African Rift). There is no evidence for a

Image of Fig. 9


Fig. 10. Stacked seismicity distribution with depth (within 200 km-wide corridors along
theprofiles in Fig. 3, based on ISC-GEMcatalogue, Storchak et al., 2013). Data for individual
profiles is shifted to simplify visualization. For profile names and locations see Fig. 3.
Vertical and horizontal scales are the same for all three types of convergent margins.
The patterns of seismicity distribution with depth are significantly different for three
types of convergent margins.
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hotspot track around Iceland, and we speculate that Iceland may be the
birthplace of a new mantle plume, if it exists. In contrast to convergent
margins and hotspot tracks, volcanic passive margins and mid-ocean
ridges have very weak anomalies in free-air gravity gradient.

The map of Bouguer gravity anomalies (Fig. 12c) primarily shows
the difference between the low-density continental and the high-
density oceanic lithosphere.Within the oceans, extremely high Bouguer
anomalies coincide with old (roughly N50 Ma) oceans and indicate the
presence of high-density lithosphere, whereas the positive anomalies
are substantially smaller in regions with young oceanic crust (around
mid-ocean ridges) and aroundmagmatic regions (e.g. volcanic margins
and hotspot tracks).

Similarly, at the convergentmargins, strong positive Bouguer gravity
anomalies are associated with old oceanic lithosphere and smaller
positive anomalies are associated with volcanic arcs, whereas negative
anomalies are associated with continental orogens, indicative of crustal
roots. The convergence zone at Tibet has a strongnegative anomaly over
a large area, which provides further evidence for the crustal or litho-
spheric stacking of the Eurasian and Indian plates. However, palaeo-
orogens do not exhibit strong Bouguer anomalies.
7. Thermal structure across the convergent margins

As discussed above, we find that the thermal structure of the
downgoing slab may have strong effect on the subduction dip (Fig. 11).
We try to address the thermal structure of convergent margins by
analyzing data on surface heat flow (Fig. 13) and upper mantle seismic
shear-wave velocity structure (Fig. 14).

Surface heat flow does not show systematic variations across the
convergent margins (Figs. 4 and 13), although some general patterns
have been recognized for the Circum-Pacific subduction zones (Currie
and Hyndman, 2006; Wada and Wang, 2009). There is a general ten-
dency for higher heat flow above or around volcanic arcs and in the
back-arc basins (Fig. 4). Low heat flow is measured in some young con-
tinental orogens (e.g. Tibet). However, in these regions heat flow anom-
aly in the mantle may be too young for the thermal perturbation to
reach the surface and to be reflected in the present surface heat flow.

The problem in recognizing regional patterns, especially across
oceanic margins, may largely be due to strong heterogeneity of mea-
sured heatflowvalueswhere themeasurementsmay be strongly affect-
ed by factors that are not readily controllable, such as hydrothermal
circulation in shallow crustal layers (in particular in the oceanic envi-
ronment, including marine sediments), local magmatic activity associ-
ated with volcanic arcs and magmatic intrusions into the crust, crustal
faulting common in regions of active tectonics, and horizontal heat
transfer in regions with a high contrast in thermal properties (which
one would expect at convergent margins). Note that in many conver-
gent settings the number of heat flow measurements is low (Fig. 13c),
which further complicates interpretations and recognition of patterns
for convergent margins of different types.

The analysis of the upper mantle velocity structure shows that
at depth b100 km, mid-ocean ridges with partial melting in the
shallow mantle dominate the pattern as linear low-velocity anomalies
(Fig. 14a). However, a tendency for low upper mantle velocity is also
found in the distributed continental convergence zones, e.g. Tibet, the
Himalayan to Alpine orogens, and western North America. Very strong
gradient in Vs anomalies at 75–125 km depth is typical of ocean–
ocean and, in some cases, continent–ocean convergent margins; these
anomalies are associated with mantle wedge melting. In areas of conti-
nent–continent collision (e.g. Tibet), Vs anomalies at a 75 kmdepthmay
be associated with deep crustal roots. Deeper in the upper mantle, at
175 km depth, strong low-velocity anomalies are no longer observed
across the convergent margins, thus indicating that shallow melting
within the mantle wedge is characteristic of these tectonic settings
(Fig. 14c). At these depths, it appears that themain anomalies in seismic
velocity are related to the roots of cratonic lithosphere (Artemieva and
Mooney, 2001).

8. Seismic images of convergent margins

A large variety of seismic data from presently active convergent
margins provide a wealth of information on their crustal and upper
mantle structure. The literature is so comprehensive that we limit our-
selves to mentioning only a few publications from the various tectonic
settings discussed in this paper. We refer the reader to Table 2 for
a more comprehensive overview of seismic models of convergent
margins.

Type examples of an ocean–ocean convergent margin that were
imaged seismically include the Tonga–Kermadec subduction zone
(Contreras-Reyes et al., 2011; Stratford et al., 2015) and theNorth Island
of New Zealand (Reyners et al., 2006; Stern et al., 2015). A recent
controlled-source seismic experiment provided a high-resolution
image of the base of a subducting oceanic plate which is dipping at ca.
15 beneath North Island of New Zealand (Stern et al., 2015). Seismic
data show a sharp, less than 1 km thick, seismic boundary with a ca.
8% decrease in Vp velocity that is parallel to the top of the subducting
plate. The presence of a parallel reflection located ca. 10 km deeper

Image of Fig. 10


Fig. 11. Subduction dip at different convergentmargins (see Fig. 3 for profile names and locations; Table 1 and Fig. 4 for details). Correlations between: (a) slabdip angle at sub-Mohodepth
and dip angle at depth below ca. 200 km; (b) age of subducting oceanic plate and slab dip angle at sub-Moho depth; (c) convergence rate and slab dip angle at sub-Moho depth;
(d) convergence rate and dip angle at depth below ca. 200 km. Blue colors— for ocean–ocean convergence; red colors— for continent–ocean convergence; labels refer to profile codes
in Figs. 3–4 and Table 1. Red and blue lines— bet linear fit; R2 is coefficient of determination. Strong correlations are observed for ocean–ocean convergence margins, but no correlations
exist when continental plates are involved in convergence.
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has been interpreted as evidence for a low-viscosity channel along the
base of the lithospheric plate. This channel formed by partial melts or
fluids acts as the decoupling zone between the lithosphere and the
convecting mantle.

Seismic studies of the Kuril arc in northern Japan show clearly a
subducting slab, above which the volcanic arc develops (Nakanishi et
al., 2009). The magmatic arc is divided into forearc and accretionary
complex above the newmagmatic crystalline crust,whichhas a distinct-
ly different upper crust of a relatively lowvelocity anda lower crustwith
a very high velocity. It is believed that such magmatic arc may be the
primary origin of continental crust if tectonic processes may separate
the upper from the lower crust (e.g. Taylor, 1967; Tatsumi, 2005). How-
ever, the process is not yet fully understood, because hydrousmelts pro-
duced by peridotite melting in mantle wedge are basaltic, and different
mechanismswere proposed for how theymay acquire andesitic compo-
sition to produce continental crust (Kay and Kay, 1993; Rudnick, 1995;
Jagoutz and Behn, 2013).

Continent–ocean convergent margins have been extensively im-
aged along the western coast of the Americas. In Chile, a series of
normal-incidence reflection and wide-angle reflection/refraction
images of the convergent margin have been observed (e.g. ANCORP
Working Group, 1999; Oncken et al., 2003), supplemented by receiv-
er function (Yuan et al., 2000) and seismic tomography of the upper
mantle (Schurr et al., 2006). In North America, images of the conver-
gent margin include a seismic refraction model (Trehu et al., 1994), a
combined normal-incidence reflection and wide-angle reflection/
refraction model around the Vancouver Island (Hyndman et al.,
1990; Calvert, 1996), and a recent POLARIS seismic project across
the Cascadia subduction zone which shows the presence of an east-
wards dipping low-Vs anomalous body below the Vancouver Island
(Nicholson et al., 2005). Some of the most recent images of conti-
nent–ocean subduction complexes have been obtained along the
Sunda-Java convergent margin in Indonesia, with significant varia-
tions in subduction style along the margin (e.g. Lüschen et al., 2011;
Shulgin et al., 2011).

Continent–continent convergence systems are particularly numer-
ous in Eurasia. Controlled source seismology provided images across
the Pyrenean system (e.g. ECORS Pyrenees Team, 1988; Mezcua and
Rueda, 1997) and the Alps (Brückl et al., 2007), whereas seismic tomog-
raphy and receiver functions have been recently intensively applied
along the whole post-Tethys collisional belt (e.g. Kind et al., 2002;
Lippitsch et al., 2003; Souriau et al., 2008; Zhang et al., 2012). The
broad zone of continental deformation in the Tibet-Himalayas region
has been intensively studied by a large number of international
experiments and we refer the reader to the corresponding publications
(e.g. Brown et al., 1996; Kind et al., 2002; Tilmann et al., 2003;
Wittlinger et al., 2004; Yao et al., 2006).

Geophysical imaging in a number of ancient continental ter-
ranes, that have been tectonically quiet since the late Archaean or
Proterozoic, has identified structures in the upper mantle that are
similar to the images of presently active subduction settings.
These images provide constraints on the time when plate tectonics
begun. The oldest imaged paleosubduction is in the eastern
Canadian shield, where a clear dipping seismic reflection is ob-
served over a depth range of approximately 30 km from the
Moho into the upper mantle (Calvert et al., 1995). Given a strong
contrast in crustal structure around the same location combined
with geochronological dating of shear zones and terranes, this
image has been interpreted as evidence for continent–continent
collision at 2.69 Ga. Similar image, including a 10 km offset on the

Image of Fig. 11


Fig. 12.Gravity anomalies (based on EGM2008, Pavlis et al., 2012): (a) free air anomalies; (b) horizontal gradient of free air gravity anomalies; (c) Bouguer gravity anomalies (reduction is
based assuming density of 2670 kg/m3 for topography, 1050 kg/m3 for water, and 919 kg/m3 for ice).
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Moho, was earlier obtained for the Baltic Shield and interpreted as
a 1.89 Ga old continental collision belt (BABEL Working Group,
1990). Further south in the Baltic Shield, coincident wide-angle
seismic data show that another dipping mantle reflector, related
to a 1.86 Ga continental collision, is associated with a pronounced
change in seismic velocity from ca. 7.9 to 8.2 km/s thus providing
a clear indication for collision between two plates of different ori-
gins (Abramovitz et al., 1997). Proterozoic collision has been also doc-
umented in northwestern Canada where a dipping mantle reflection
was imaged down to ca. 80 km depth (Cook et al., 1997) and by in-
ferred interpolation with a receiver function image it has been extend-
ed to ca. 200 km depth (Bostock, 1999).

Image of Fig. 12


Fig. 13. Surface heat flow (based on compilation of IHFC, 2011): (a) interpolation (with a 20 deg radius) based on point heat flow measurements on continents and in oceans (b);
(c) density of heat flow measurements counted for 1° × 1° cells.
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Younger orogenic events related to Sveconorwegian (Grenvillian)
collision have been recognized by reflection seismic observation
of dipping mantle reflections in the North Sea region in Europe
(Lie et al., 1990). In two places in northern Europe, spectacular
Caledonian structures have been imaged in the upper mantle
(Warner et al., 1996; MONA LISA Working Group, 1997). A signifi-
cant wide-angle observation of variation in seismic velocity across
the dipping mantle reflectors was observed at the MONA LISA pro-
files, as well as indication for anisotropy with the fast axis along a
dipping slab (Abramovitz and Thybo, 2000). Wide-angle seismic
and teleseismic data provide evidence for paleosubduction at the
transition between the Precambrian East-European Craton and Phaner-
ozoic Europe (e.g. Zielhuis and Nolet, 1994; Grad et al., 2002; Shomali
et al., 2006).

Image of Fig. 13


Fig. 14. Relative perturbations (with respect to PREM) of Vs seismic velocity in the upper mantle at depths of 75 km (a), 125 km (b), and 175 km (c) (based on surface wave tomography
model SL2013sv, Schaeffer and Lebedev, 2013).
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9. Conclusions

We have presented a series of maps and profiles based on geophys-
ical (gravity, seismic, thermal) data in order to illustrate the effects of
the plate tectonic processes at convergent margins on the crustal and
upper mantle structure, seismicity, and geometry of subducting slab.
Based on the presented data we conclude:

• Plate convergence rate depends on the type of convergent margin,
but does not show any systematic patterns. Convergence rate is

Image of Fig. 14
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significantly larger when one of the plates is oceanic, and the
smallest values of convergence rate are characteristic of the
plate boundary zones between two colliding continental plates.
Unexpectedly, the oldest oceanic plate in the Pacific ocean has
the smallest convergence rate, which may indicate that the tem-
perature of the subducting slab has less importance for the downward
forces than the density contrasts that develop due to metamorphic
reactions in the downgoing slab.

• Our analysis of seismicity patterns reveals that, with very few excep-
tions, high-magnitude (M N 8.0) earthquakes all require the presence
of an oceanic plate, and the strongest earthquakes seem to be restricted
to the continent–ocean collision zones. The results also indicate that
the presence of an oceanic plate is a pre-condition for generating inter-
mediate (70–300 km) and deep (300–700 km) seismicity along the
convergent margins. Subducting oceanic slabs are seismogenic to
depths of around 700 km, and oceanic slabs subducting beneath a con-
tinent are not seismogenic at depths between ca. 250 km and 500 km.
In case of continent–continent collision, the seismogenic zone termi-
nates at ca. 200 km depth. Based on this observation, we propose
oceanic origin of subducting slabs beneath the Zagros, the Pamir, and
the Vrancea zone, where seismicity extends below a 200 km depth.

• Our analysis of subducting slab dip angle shows different patterns for
different types of convergent margins. For continent–ocean subduc-
tion, there is no correlation between the dip angle and the age (thermal
structure) of the subducting oceanic slab, nor the convergence rate.
We find, however, clear trends for ocean–ocean subductions. Old
oceanic plates with thick lithosphere subduct at shallower angles
than young oceanic plates. High convergence rate of oceanic plates
leads to steeply dipping slabs, and at very high convergence rate, the
downgoing slab rotates towards a near-vertical dip angle at depths
below ca. 500 km.

• Strong free-air gravity anomalies of positive and negative signs demon-
strate that local isostasy is not satisfied at the convergent margins.
However, theremay be a near-isostatic equilibrium in large distributed
deformation zones, such as Tibet.

• Low seismic velocities in the uppermantle beneath convergentmargins
down to depths of 150 km may be related to mantle wedge melting.
The termination of the low velocity anomalies at a 175 km depth indi-
cates that melting within the mantle wedge is confined to shallower
levels.
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