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Abstract we present a new digital model (NCcrust) of the seismic crustal structure of the Neoarchean
North China Craton (NCC) and its surrounding Paleozoic-Mesozoic orogenic belts (30°-45°N, 100° - 130°E).
All available seismic profiles, complemented by receiver function interpretations of crustal thickness, are
used to constrain a new comprehensive crustal model NCcrust. The model, presented on a 0.25° x 0.25°grid,
includes the Moho depth and the internal structure (thickness and velocity) of the crust specified for four
layers (the sedimentary cover, upper, middle, and lower crust) and the Pn velocity in the uppermost mantle.
The crust is thin (30-32 km) in the east, while the Moho depth in the western part of the NCC is 38-44 km.
The Moho depth of the Sulu-Dabie-Qinling-Qilian orogenic belt ranges from 31 km to 51 km, with a general
westward increase in crustal thickness. The sedimentary cover is 2-5 km thick in most of the region, and
typical thicknesses of the upper crust, middle crust, and lower crust are 16-24 km, 6-24 km, and 0-6 km,
respectively. We document a general trend of westward increase in the thickness of all crustal layers of the
crystalline basement and as a consequence, the depth of the Moho. There is no systematic regional pattern
in the average crustal V,, velocity and the Pn velocity. We examine correlation between the Moho depth
and topography for seven tectonic provinces in the North China Craton and speculate on mechanisms of
isostatic compensation.

1. Introduction

Detailed knowledge of crustal structure may be obtained from a combination of geophysical observations,
experimental petrology at high temperature and pressure, and studies of exposed crustal sections and
crustal xenoliths carried in basalts and kimberlites. Geophysical observations (seismic, gravity, and borehole
data) provide the means of probing the generally inaccessible deep crust over large areas. Recently, several
crustal structure models, constrained by seismic studies in continental areas, have been presented for Eurasia
[Artemieva and Thybo, 2013; Cherepanova et al., 2013] and Asia [Stolk et al., 2013].

A series of destructive earthquakes in North China has drawn increased attention to the crustal structure of
the region. Numerous wide-angle seismic profiles [Li et al., 2006; Teng et al., 2013; Zhang et al., 2011] pro-
vide observations of the crustal/mantle lithospheric structure of this region (Figure 1a). A total of 37 seismic
reflection/ refraction profiles with a total length of ~18,000 km was acquired from 1976 to 1993. Ten profiles
(1-10; blue lines in Figure 1a) were chosen to form part of four transects in a program of the Global Geo-
science Transects, and they form the basis for the global model CRUST 1.0 for this region. Between 1998 and
2005, several short seismic profiles were acquired for academic research. After 2008, long-range (>1000 km)
seismic profiles across the whole North China Craton (pink lines in Figure 1a) provided new observations of
the seismic velocity structure of the crust and the uppermost mantle in the region. Further high-resolution
deep seismic reflection profiling by the SinoProbe Program (Profiles 47 and 48 in Figure 1a) provides reliable
lithosphere-scale information for the northern and southern margin of the North China Craton.

More than 30,000 km of 41 refraction/wide-angle reflection profiles across the whole of China have early
been used to constrain the Moho depth (Figure 1b and Table 1) [Li and Mooney, 1998]. An updated contour
map of the crustal thickness constrained by 90 refraction/wide-angle reflection profiles (total length of about
60,000 km) was reported recently (Figure 1b and Table 1) [Li et al., 2006]. The interpreted results of 114 seismic
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Figure 1. (a) Topography and deep seismic profiles used to constrain NCcrust (Black lines: geological boundary; blue
lines: profiles 1-10 in Table 1; pink lines: profiles 11-14 in Table 1; yellow lines: profiles 15-48 in Table 1; white dots:
Receiver function interpretations for the Moho depth). (b) Coverage of the China continent by models of the Moho
depth (deep seismic sounding: [Li and Mooney, 1998; Li et al., 2006; Teng et al., 2013]; receiver functions: [Y. H. Li et al.,
2014; He et al., 2014; Wei et al., 2016]; tomography: [Sun et al., 2004, 2008; Gravity: Guo et al., 2012]; and crustal structure
[Gao et al., 1998; Li et al., 2006; Duan et al., 2016].

profiles allowed for comparing the average P wave velocity and the Moho depths for tectonic provinces
(Figure 1b and Table 1) [Teng et al., 2013]. A high-resolution Moho depth map of China was also derived from
receiver function data analysis (Figure 1b) [He et al., 2014; Y. H. Li et al., 2014; Wei et al., 2016]. A layered model
of shear wave velocity of the crust and uppermost mantle velocity of China and surrounding area was con-
strained by body wave tomography (Figure 1b) [Sun et al., 2004, 2008]. Guo et al. [2012] constrain a new Moho
depth model including information from the Bouguer gravity anomaly. Based on analysis of seismic profiles,
four-layered (upper, middle, lower, and lowermost crust) crustal models were obtained for different tectonic
units in China (Figure 1b and Table 1) [Gao et al., 1998; Li et al., 2006]. Most recently, a three-layer (sediments,
upper and lower crust) model (HBCrust1.0) constrained by 42 seismic profiles on a grid of 0.25° x 0.25° X 2 km
became available for a small area (112°-120°E, 36°-42°N) (Figure 1b and Table 1) [Duan et al., 2016] (also see
http://www.craton.cn/data Chinese webpage of HBCrust1.0).

This study presents a new crustal model (NCcrust) for the whole North China Craton and the surrounding
regions. Compared to other regional crustal models,

1. NCcrust covers a larger area (Figure 1b), which includes the Phanerozoic Sulu-Dabei-Qinling-Qilian orogenic
belt in the south and the Precambrian North China Craton (Figure 2). The NCcrust is available digitally on a
uniform grid 0.25° x 0.25° for the region 100°-130°E, 30°-45°N.

2. NCcrustincludes information on the internal structure of the crust (Vp velocity and thickness) for four crustal
layers (sedimentary cover, upper crust, middle crust, and lower crust) and the Pn velocity in the uppermost
mantle, based on all available seismic profiles and receiver function results.
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Figure 2. (a) Geological map of the North China Craton and adjacent region. CAOB: the Central Asian Orogenic Belt;
NCC: the North China Craton; WB: the Western Block, EB: the eastern block, QL-DB: the Qinling-Dabie Belt, SL: the Sulu
Belt, YC: the Yangtze Craton Geological boundaries are after Zheng et al. [2013] with modifications. (b) Free-air gravity
anomaly map of the NCC. Data from EGM-2008.

3. NCcrust is based on seismic data from the region, and we emphasize that it does not include gravity data,
such that the model is suitable for gravity studies such as calculation of mantle gravity and density [Herceg
etal., 2016; Kaban et al., 2003; Yegorova et al., 20071.

4.The Eastern Block has a relatively shallow Moho of unclear origin, and we provide possible explanations
based on our model.

5. Based on NCcrust, regional correlation between Moho depth and topography for different tectonic provices
were examined. In addition, we speculate on the contributions to topography for each tectonic provine and
the mechanisms of isostatic compensation.

2. Geological Background

The study area comprises the North China Craton and the surrounding orogenic belts (Figure 2a). This area
has experienced a complicated tectonic evolution which we briefly review below.

2.1. Orogenic Belts

The WWN-EES trending 300 km wide and 1200 km long [Tseng et al., 2009; C. Y. Wang et al., 2005] Qilian orogenic
belt constitutes the main part of the northeastern margin of the Tibetan Plateau. Geological, petrological, and
geochemical studies suggest that the Qilian Belt records the history of the spreading, subduction, and closure
of the Qilian Ocean; collision between the southwestern part of the North China Craton and the Qaidam blocks
(in the northern Tibetan Plateau); and postcollisional tectonic evolution from ~550 Ma to ~400 Ma 2013. The
complex geodynamic evolution and its lack of isostasy equilibrium of the Qilian Belt is reflected in a highly
heterogeneous free-air gravity anomaly which ranges from —150 mGal to +150 mGal (Figure 2b).
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The Qinling-Dabie-Sulu orogenic belt is a 2000 km long Mesozoic [Li et al., 1993] high pressure-ultra high
pressure (UHP) metamorphic belt. It records the multistage evolution processes of arc-terrane accretion,
arc-continent, and continent-continent collisions from ~430 Ma (the Ordovician) to ~215 Ma (the Triassic)
between the North China Craton and the Yangtze Block. It is separated into two terranes by the Mesozoic
Tan-Lu (Tancheng-Lujiang) fault which separates the Qinling-Dabie Belt in the west from the Sulu Belt in the
east. The orogen is close to isostatic equilibrium with typical values of free-air gravity anomalies of +20 mGal
(Figure 2b), which show a significant scatter in the western part of the orogeny.

2.2. The North China Craton

The North China Craton, covering a triangular-shaped area of 1,500,000 km?, is bounded to the southwest
and north by the early Paleozoic Qilian Orogen and the late Paleozoic Central Asia Orogen, respectively. It is
separated from the Yangtze Craton in the south and east by the Qinling-Dabie-Sulu UHP metamorphic belt.
The North China Craton was traditionally considered to consist of Precambrian (Archean to Paleoproterozoic)
basement overlain by later (Proterozoic to Cenozoic) sedimentary covers. It is generally considered to be
formed by three discrete crustal blocks, namely, the Eastern Block, the Western Block, and the intervening
Trans-North China Orogen (TNCO). The transition from the TNCO to the eastern block is marked by a sharp
drop in topography from nearly 2 km to close to 100 m, and it approximately coincides with the westward
extent of Mesozoic subduction. The Eastern Block which includes the North China Plain, the Yanshan Belt,
and the Jiao-Liao-Ji Belt is characterized by high surface heat flow of ~64 mW/m? [He, 2015] and has been
strongly affected by a thermal event between the Paleozoic and the late Cenozoic. And the Western Block
which includes the Ordos Basin, the Yinshan Belt, and the Khondalite Belt has lower heat flow (>50 mW/m?)
[He, 2015] and is considered to be the most stable part of the North China Craton. There is no geological evi-
dence for significant deformation within the Western Block of the North China Craton, which also lacks big
earthquakes.

The oldest rocks in the North China Craton have ages of 3.8-3.6 Ga [Liu et al., 1992; Song et al., 1996]. Published
zircon Hf and whole-rock Nd isotopic data from Neoarchean rocks indicate that the major crustal growth in
the NCC took place at 2.8-2.7 Ga [Geng et al., 2012; Wu et al,, 2005b] followed by 2.6-2.5 Ga remelting or
differentiation of the crust. The North China Craton is traditionally considered to be finally assembled by Pale-
oproterozoic time and to be stable until the eruption of kimberlites in the Paleozoic [Q. L. Liet al., 2011]. Later,
the craton has been reactivated or decratonized by the Mesozoic Pacific subduction, with tectonic uplift and
basin development [Wu et al., 2005a]. These processes may also have produced strong lateral heterogeneities
in the lithosphere structure [Chen, 2012; Chen et al., 2014].

The Ordos Basin, located in the western North China Craton with an area of over 250,000 km?, is a large
Mesozoic intracontinental basin. It is surrounded by the Trans-North China Orogen in the east, the Khon-
dalite Belt in the north, and the Qilian fold system in the southwest. This basin with a Neoarchean basement
experienced subsidence and sedimentation in the Paleozoic, with further basin formation in Mesozoic and
Cenozoic. The basin is close to isostatic equilibrium, as indicated by near-zero, weakly negative free-air gravity
anomalies (Figure 2b). The Yinshan Belt across at the northwestern edge of the NCC contains extensive expo-
sures of Archean rocks and is also close to isostatic equilibrium (Figure 2b). The nearly east-west trending
Paleoproterozoic Khondalite Belt, located between the Ordos Basin and the Yinshan belt, is a collisional belt
that together with the Yinshan and the Ordos Basin forms the Western Block of the NCC since ~1.95 Ga
[Zhao and Zhai, 2013]. Most of the Western Block is tectonically stable over more than 2.5 Ga [Chen et al., 2009],
but significant deviation from regional isostasy is typical at the Khondalite Belt (free-air gravity anomaly range
from —100 mGal to +100 mGal; Figure 2b).

The North China Plain covers approximately 310,000 km?. It is located between the Qingling-Dabie-Sulu Oro-
genic belt to the south and the Yanshan Belt to the north, the Trans-North China Orogen to the west, and
the Su-Lu belt to the east. The plain developed on Archean granulites and Paleoproterozoic greenschists,
and it is filled with Paleozoic to Cenozoic sedimentary rocks. The EW trending Yanshan Belt is located in the
northeastern part of the North China Craton and was formed by collision and extension in the Mesozoic. The
Jiao-Liao-Ji Belt underwent rifting to form an incipient ocean that was closed at Paleoproterozoic (~1.9 Ga)
through subduction and collision [Zhao and Zhai, 2013]. All three tectonic provinces are at near-isostatic equi-
librium with free-air gravity anomalies typically ranging from —20 mGal in the North China Plain to +20 mGal
in the Jiao-Liao-Ji Belt (Figure 2b).

XIAET AL.

NCC AND SURROUNDINGS’ CRUSTAL STRUCTURE 5



@AG U Journal of Geophysical Research: Solid Earth 10.1002/2016JB013848

The Western Block collided with the exotic Eastern Block along the 100-300 km wide and 1200 km long SW-NE
trending Trans-North China Orogen in the early Proterozoic (~1.85 Ga). The Trans-North China Orogen (TNCO)
consists of both high-pressure granulites and low-grade granite-greenstone complexes which contain many
classic indicators of collision tectonics. This belt is well recognized by the heterogeneous pattern of free-air
gravity anomalies that vary locally between —100 mGal and +100 mGal with an average value of around zero
(Figure 2b).

3. Seismic Data on the Crustal Structure

3.1. Database

NCcrust is constrained by all available deep sounding reflection/refraction seismic profiles in North China with
a total length of more than 23,000 km (Figure 1a and Table 2). We also use receiver function analysis results
(white dots in Figure 1a) [He et al., 2014; Y. H. Li et al., 2014; Wei et al., 2016] to constrain the Moho depth,
whereas the internal structure and crustal and Pn velocities are based on deep sounding reflection/refraction
seismic profile only.

In case of multiple interpretations for the same seismic profile (e.g., Profile 10, the Shijiazhuang-Kalagin,
interpreted by Sun et al. [1985] and by S. J. Wang et al. [2005]) we preferred the latest one, since recent inter-
pretations are usually of a higher quality. For the Wendeng-Alashan profile (Profile 11 in Figure 1a) [ia et al.,
2014; Tian et al., 2014], we use the interpretation by the data acquisition group. If two or more profiles cross
the same area (e.g., the Capital area), we use the most recent (after 2000) data acquisition and interpretation.

To constrain the Moho depth (Figure 3a), in addition to reflection/refraction seismic profiles, three receiver
function databases are used for establishing our model [He et al., 2014, Y. H. Li et al., 2014, Wei et al., 2016].
To decrease the uncertainty related to the receiver function interpolation method, we carefully compared the
result from these three models. For the same station, if the difference between two or three interpretations of
Moho depth is less than 3 km, we use the average. If the difference between all three interpretations of Moho
depth is >3 km, we do not use the result of that station.

In most places, there is a close match in between the Moho depth based on receiver function results and
reflection/refraction profiles results (Figure 3b). For example, Y. H. Li et al. [2014] compare the difference in the
Moho depth in the North China Craton between different methods and show that it is less than 2 km in most
of the area. This kind of match was also found in Southern Africa [Durrheim and Green, 1992; Niu and James,
2002], Western Superior Craton [Angus et al., 2009; Cook et al., 2010], and Norway [Stratford and Thybo, 2011;
Frassetto and Thybo, 2013].

3.2. Structure of the Database
Based on typical V,, velocities, we subdivide the crustal structure into four layers:

1. Sedimentary cover: V,, < 5.8 km/s
2. Upper crust: 5.8 km/s—6.4 km/s
3. Middle crust: 6.4 km/s-6.8 km/s
4. Lower crust: 6.8 km/s—-7.3 km/s

These values for the lower crust are in agreement with laboratory measurements of P wave velocities in gran-
ulites from the North China Craton with V,, values of 6.8 km/s-7.3 km/s [Gao et al., 2000] and in retrograde
eclogite from a drill core of the Chinese Continental Scientific Drilling Project (the Su-Lu Orogenic belt) with
P wave velocity of 6.8 km/s-7.1 km/s [Sun et al., 2012]. They are also in agreement with crustal models for
other continental regions [Artemieva and Thybo, 2013; Cherepanova et al., 2013] as well as global models such
as CRUST 1.0 [Laske et al., 2013]. We note that some places (e.g., Ordos Basin) have a 5 km thick layer with a P
wave velocity of 6.7 km/s. With our definition this forms part of the middle crust, whereas it will be part of the
lower crust if the limit is at 6.7 km/s as some authors have defined it.

Our database is based on point data constrained by digitization along seismic profiles with a lateral step not
larger than 50 km and more dense sampling in regions with a fast change in V), crustal structure. Therefore,
the areal coverage of the NCcrust model is nonuniform. In order to present a regional crustal structure on a
uniform grid, our digital regional maps are produced by interpolation.

All maps of the crustal structure are produced by the kriging method with an interpolation radius of 1°.
The largest gap without seismic data coverage in our study area is <2°in the Western Block which sup-
ports the choice of an interpolation radius of 1°. The interpolation parameters are chosen after a comparison
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Table 2. Summary of Seismic Profiles

No. Profile Name Length (km) Reference

1 Dongwuzhumugingi-Donggou 960 Lu and Xia [1993]

2 Lianyungang-Lingyi-Sishui 328 Liuetal. [1991] and G. J. Wang et al. [2007]

3 Zhucheng-Dingxian-Tuoketuo 530 Liuetal [1991]

4 Xi'an-Yan'an-Baotou-Baiyunebo 1120 Chinese State Seismological Bureau (CSSB) [1988]
5 Fengxian-Fuliji 570 Zhang et al. [1988] and Bai and Wang [2006]

6 Lingbi-Zhengzhou 502 CSSB[1988]

7 Zhengzhou-LingFen-Jingbian 633 CSSB[1988]

8 Zhengzhou-Yinchuan (west) 680 CSSB [1988]

9 Suixian-Anyang 480 Hu et al. [1986]

10 Shijiazhuang-KalLaqgingi 746 Sun et al. [1985] and S. J. Wang et al. [2005]
11 Wendeng-Alashan 1500 Jia et al. [2014], Tian et al. [2014], and S. J. Wang et al. [2014]
12 Zhucheng-Yichuan 1019 S.L Lietal. [2011]

13 Dafeng-Baotou Duanetal. [2015]

14 Chongging-Yulin Teng et al. [2014]

15 Beijing-Zhangjiakou-Huade 300 Zhao et al. [2005]

16 Haixing-Yangyuan-Fengzheng 579 J.S.Zhang et al. [1997]

17 Taiyuan-Xuanhua 550 Zhao et al. [2006]

18 Renxian-Hejian-Wugqing 431 Chinese State Seismological Bureau (CSSB) [1986]
19 Cangzhou-Tianjin-KaLaginzuoyi 510 CSSB [1986]

20 Dezhou-Qinhuangdao 587 CSSB[1986]

21 Baigezhuang-FengNing-Zhenglanqi 407 CSSB[1986]

22 Tanggu-Sanhe-Miyun 220 CSSB [1986]

23 Yanshan-Daxin-Yanging 476 S. Wang et al. [2005]

24 Ninghe-Beijing-Zhuolu 450 Zhao et al. [1999]

25 Heze-Lingzhou-Changzhi 304 Jiaand Liu [1991] and Ren et al. [1992]

26 Anguo-Yonggin-Zunghua 350 Chinese State Seismological Bureau (CSSB) [1986]
27 Zhengzhou-Jinan 600 Zhang et al. [1994]

28 Taian-Longyao-Xinxian 480 Chinese State Seismological Bureau (CSSB) [1986]
29 Beijing-Huailai-Fengzhen 342 Zhang et al. [1996] and S. Wang et al. [2005]
30 Fanzhi-Huailai-Taipushiqi 302 Nie et al. [1998] and Lai et al. [2004]

31 Wenan-Weixian-Chayouzhonggqi 420 C. K. Zhang et al. [1997]

32 Qihe-Zhanggiu-Shouguang 240 Chinese State Seismological Bureau (CSSB) [1995]
33 Shouguang-Zhanhua-Wenan 291 CSSB[1995]

34 Wenan-Dezhou-Qihe 290 CSSB[1995]

35 Yiyuan-Lelin-Dacheng 315 CSSB [1995]

36 Magin-Lanzhou-Jingbian 941 Lietal [2002]

37 Anxin-Xianghe-Kuancheng 320 Wang et al. [2004] and Zhang et al. [2011]

38 Yanchuan-Baotou-Manladu 680 Teng et al. [2010]

39 Danfeng-Xian-Binxian CSSB [1986]

40 Damo-Baiyunebo-Baxin CSSB [1986]

41 Tianjin-Beijing-Chicheng 320 S.J. Wang et al. [2007]

42 Maanshan-Qidong 300 Teng [1985]

43 Suixian-Maanshan 500 Zheng and Teng [1989]

44 Suixian-Xian 400 Ding et al. [1987]

45 Yichuan-Shiyan 280 Cao et al. [1994]

46 Zhuangmu-Zhanggongdu 420 Dong et al. [1998] and Wang et al. [1997]

47 Huailai-Suniteyouqi 453 W.H. Lietal [2014]

48 Lixin-Yixing 450 Xuetal [2014]

49 Ordos-Liupanshan 500 Li[2013]

50 KCRT2002 250 Cho et al. [2006]

51 KCRT2004 340 Choetal. [2013]
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Figure 3. (a) Depth of Moho (below sea level). (b) Difference between values from seismic profiles and receiver function
studies. Color scales are the same as in Figures 4 and 5.

between different interpolation radii and gridding methods (Figures 3 and 4) in order to minimize devia-
tions of interpolated values from the seismic data and to avoid bull's-eye anomalies and similar artifacts from
small interpolation radius (Figure 4a). In most regions the uncertainties of interpolation with different radii
are <2 km for the Moho depth which is comparable to the resolution of the seismic methods, but locally, in
two regions with very sparse data they may be up to 6 km as indicated by the calculated differences between
results based on different interpolation methods (Figures 4b and 4c). We note that even these interpolation
differences are significantly smaller than the difference in the Moho depth between the NCcrust model and
the global CRUST1.0 model and a regional receiver function (RF)-based crustal model (Figure 5).

4. Analysis of the NCcrust: General Patterns and Regional Variations

4.1. Precambrian Crust of the North China Craton
4.1.1. Moho Depth

The NCcrust model shows that the Archean crust of the North China Craton is strongly heterogeneous and
that generally the crust thickens from east to west (Figure 3). The Moho is shallow in the east (30 km) and
deep in the west (up to ~55 km) close to the edge of the Tibetan Plateau. A relatively thin crust (<32 km) is
also observed in the southern part of TNCO, as compared to the surrounding areas (Figure 3).

Reworked Archean crust with a thickness of less than 36 km (mostly 32-34 km) is typical of the entire Eastern
Block (including the North China Plain, the Yanshan Belt, and the Paleoproterozoic Jiao-Liao-Ji Belt. It is there-
fore much thinner than the global average of 40—42 km for cratonic crust [Mooney et al., 1998].

The Paleoproterozoic collision of the Western and Eastern blocks formed the Trans-North China Orogen
(TNCO) at ~110° - 118°E. Similar to the regional pattern, the Moho depth shows an east-west increasing trend

XIAET AL.

NCC AND SURROUNDINGS’ CRUSTAL STRUCTURE 8



@AG U Journal of Geophysical Research: Solid Earth 10.1002/2016JB013848

Figure 4. (a) Uncertainty related to interpolation radius: difference between the Moho depth models based on
interpolation radius = 1°and radius = 0.1°. (b) Uncertainty associated with interpolation method: Moho depth map by
nearest neighbor and Kriging interpolation method. (c) Difference between Kriging and cubic spline interpolation
methods. Color scale is the same in Figures 4a-4c and the same as in Figures 3 and 5.

even in this narrow orogenic belt and on average the eastern part is 3-5 km shallower (~34-36 km) than
the western part (~38-41 km). It is remarkable that while the crust is thin (<40 km) in most of the TNCO, the
topography is relatively high (1-2 km).

The average Moho depth in the Ordos Basin is 44.0 + 3.0 km. The range of the Moho depth variation is
extremely large, from ~35 km in the east to 47 km in the west. Two interfaces were determined beneath the
eastern margin of the Ordos Basin by virtual deep seismic sounding and teleseismic waveform technique

XIAET AL. NCC AND SURROUNDINGS’ CRUSTAL STRUCTURE 9
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Data coverage in
the CRUST1.0 database

Coverage by the
Receiver Function database

Figure 5. Maps of difference between Moho depth in NCcrust and (a) CRUST 1.0 [Laske et al., 2013]. (b) Receiver function
studies [He et al., 2014]. Color scales are the same as in Figures 3 and 4.

together with the receiver function method [Yu et al.,, 2012]. One interface is at ~40 km depth and the other at
~60 km depth. Based on absolute seismic velocities, these authors interpret the deeper interface as the Moho
and the shallower one as the Conrad discontinuity. Seismic reflection and refraction profiles across the Ordos
Basin also suggest the presence of seismic interfaces at ~40 km and ~60 km depths beneath the northeastern
Ordos Basin [Teng et al., 2010]. However, these authors interpret the shallower interface as the Moho because
the P wave velocity increases from 6.8 km/s to 8.0 km/s at the ~40 km deep interface and from 8.0 km/s to
8.5 km/s at ~60 km depth. Because the velocities observed by refraction seismology have less uncertainty
than from the receiver function method, we favor the interpretation that the Moho is located at a 40 km depth.
At the same location, double interfaces were observed in receiver functions from teleseismic events at dif-
ferent azimuths, and the shallower interface at 40 km depth was interpreted as the Moho [He et al., 2014], in
agreement with our interpretation. Further, the most recent seismic reflection profile (Profile 11 in Figure 1a)
[Jia et al., 2014; Tian et al., 2014] and the crustal shear wave velocity structure from ambient noise tomogra-
phy [Cheng et al., 2013] also suggest that the Moho depth is ~40 km. Seismic refraction study of the upper
mantle beneath the Ordos Basin shows a relatively weak reflectivity in the P wave section at 60 km depth, and
the most recent interpretation of this profile (Profile 38 in Figure 1a) does not include any reflector at ~60 km
depth [Zhang et al., 2014]. We therefore consider the ~40 km deep interface as the Moho in the NCcrust model
for the Ordos Basin.

We compare the Moho depth distribution in the NCcrust model with other regional and global models
(Figures 5 and 6). The RF model which has been compiled by [He et al., 2014; Y. H. Li et al,, 2014; Wei et al., 2016]
shows similar variations in the Moho depth in the NCC, as a gravity-derived model [Guo et al., 2012] and a
tomographic model [Sun et al., 2004, 2008]. It is not surprising that all models show a similar average Moho
depth in most parts of the North China Craton (Figures 5 and 6), where the seismic data coverage is good.

XIAET AL.
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Figure 6. (a-h) Histograms of the Moho depth for different parts of the North China Craton in comparison with the
data from (Figure 6a) CRUST 1.0 [Laske et al., 2013] and (Figure 6b) receiver function studies [He et al., 2014]. See Figure 5
for details.
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Sedimentary cover

lower crust

Figure 7. Thickness of the (a) sedimentary cover (Vp < 5.8 km/s), (b) upper crust (Vp = 5.8-6.4 km/s), (c) middle crust (Vp = 6.4-6.8 km/s), and (d) lower crust

(Vp = 6.8-7.3 km/s).

However, despite of an overall similar pattern, the difference in the Moho depth between the NCcrust and the
RF model is from —5 km to +5 km and locally it exceeds 10 km (Figure 5b), although one receiver function
station in the northwestern part of the North China Craton shows a super thin crust with a 6 km difference. The
largest discrepancy between the NCcrust and CRUST 1.0 of up to 8 km is in the southeastern part of the North
China Craton (Figure 5a) and from —4 km to +4 km in most of the area. The difference between the NCcrust
and the RF results is <2 km in most regions and up to 6 km in some parts of the Western Block (Figure 5b). The
largest discrepancy is at the Ordos Basin and the Khondalite Belt, where the NCcrust model shows a deeper
Moho (by 2-3 km) than the other models (Figures 6f and 6g). We note that for this region, the NCcrust is based
on a significantly larger set of seismic data than the CRUST 1.0 model and RF results (Figures 1a and 5).
4.1.2. Internal Structure of the Crust

The sedimentary cover is, in general, 2-6 km thick. Thick sequences of sediments (5-6 km) are typical of the
Ordos Basin and the northern part of the North China Plain. The northern part of the Sichuan Basin has a
4-5 km thick sedimentary sequence, similar to the Songliao Basin (3-4 km). The thickness of the sedimen-
tary cover is smallest (only 2 km) in the southern part of the North China Plain in the northern part of the
Trans-North China Orogen and in the Yanshan Belt.

Typical thicknesses of the upper crust, middle crust, and lower crust beneath the North China Craton are
16-24 km, 10-22 km, and 0-6 km, respectively (Table 3 and Figures 7 and 8).

1. All crustal layers show a systematic trend in thickness increase from the reworked Eastern Block, where
the lowest values are observed along the coast, to the stable Western Block, where the largest values are

XIAET AL.
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sedimentary: < 5.7 km/s
upper crust: 5.8-6.4 km/s
middle crust: 6.4-6.8 km/s
lower crust: 6.8-7.3 km/s

upper mantle: > 7.8 km/s
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Figure 8. Crustal cross sections based on the new crustal model (Yinshan: the Yinshan Belt, KB: the Khondalite Belt,
TNCO: the Trans-North China Orogen, NCP: the North China Plain).
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Figure 9. Moho depth versus thickness of (a) upper crust, (b) middle crust, and (c) lower crust in different provinces of
the North China Craton.

observed (Figures 7 and 8). There is no correlation between the thickness of internal layers and tectonic
blocks.

2. The upper crust of the whole North China Craton is relatively uniform in thickness which gradually increases
from 16—20 km in the Eastern Block to 20-24 km in the Western Block. There is no clear correlation between
the thickness of the upper crust and the Moho depth (Figure 9a)

XIAET AL. NCC AND SURROUNDINGS’ CRUSTAL STRUCTURE 15
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middle crust

Figure 10. Average P wave velocity map of (a) upper crust (Vp = 5.8-6.4 km/s), (b) middle crust (Vp =6.4-6.8 km/s),
and (c) lower crust (V,J = 6.8-7.3 km/s).

3.The middle crust is 10-14 km thick in most part of the Eastern Block and up to 15-22 km thick in the
Western Block with further increase to 26-28 km toward Tibet. The smallest thickness (<6 km) is typical of
the Songliao Basin.

4.The thickness of the middle crust shows a strong correlation with the Moho depth for the whole North
China Craton (Figure 9b), while the correlation between the thickness of the upper crust/lower crust and
the Moho depth is relatively weak (Figures 9a and 9c). We therefore propose that it is chiefly heterogeneity

XIAET AL. NCC AND SURROUNDINGS' CRUSTAL STRUCTURE 16
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Figure 11. Crustal seismic velocity sections of different parts of the North China Craton, compared with the global
average for continental crust [Christensen and Mooney, 1995] and previous models of the North China Craton
[Gao et al., 1998; Zhang et al., 2011]. NCP: North China Plain, TNCO: Trans-North China Orogen.

of the middle crust that controls regional variations in Moho. This can be achieved through a viscous flow
in a weak middle crustal layer, similar to observation for the East European Craton [Artemieva, 2007].

5.The lower crust in the North China Craton is 4-10 km thinner than the global average [Christensen and
Mooney, 1995], and it is nearly absent in the tectonically reworked Eastern Block. This pattern is similar to
the Phanerozoic Western Europe, where the lower crust is nearly absent as a result of the post-Variscan
lithosphere delamination [Artemieva and Meissner, 2012].

While there is a systematic east-west trend in variations in the thickness of the crustal layers and the depth
of Moho, there is no regular pattern in variations of the crustal V,, velocity neither in the individual crustal
layers nor for the average crustal V,. Crustal velocity heterogeneity also does not correlate with the tectonic
boundaries between different crustal blocks (Figure 10).

The P wave velocity of the upper crust ranges from 6.05 km/s in the Ordos Basin and the northern part of the
North China Plain to 6.10-6.15 km/s in most parts of the North China Plain and the Trans-North China Orogen
to 6.20 km/s at the central and northern parts of the Western Block (Table 3 and Figures 10a and 11). Low P
wave velocity (<6.55 km/s) is typical of the middle crust in the northern and eastern parts of the Eastern Block
as well as in the southern part of the Ordos Basin. By the V), velocities in the upper crust and middle crust, the
Ordos Basin has two clear crustal blocks: northern with relatively high velocities and southern with relatively
low velocities. This trend is, however, weakly matched in the variations in the thickness of the upper crust only.

The P wave velocity of the lower crust is <6.90 km/s in most parts of the Western Block and in particular
beneath the Qilian Belt (Table 3 and Figures 10c and 11). We recognize a SE-NW trending belt of relatively high

kmis

Figure 12. Average P wave velocity of the crystalline crust.
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Figure 13. Map of Pn velocity. Colored dots: whole rock Mg# from Cenozoic mantle xenoliths (data from Zheng et al.
[2007], and references therein).

lower crustal V,, (>6.95 km/s) across the central parts of the Trans-North China Orogen and the North China
Plain, which apparently does not follow any known tectonic structures. It roughly corresponds to the SE-NW
trending belt of relatively high upper crustal P wave velocities (>6.15 km/s).

On the whole, the average crustal V, is low in the western and eastern parts and high in the central part of
the NCC. The average P wave velocity in the crystalline crust ranges from 6.28 km/s in the northern part of the
North China Plain, the northern part of the Trans-North China Orogen, and the Yinshan Belt, as well as in the
central Qinling-Dabie Belt, to 6.42 km/s in the Khondalite Belt and the Ordos Basin with the highest values of
~6.45 km/s in the northwest Qinling-Dabie Belt (Table 3 and Figure 12).

4.1.3. Pn Velocity in the Uppermost Mantle

The worldwide average Pn velocity for shields and stable platformsis 8.1 + 0.2 km/s [Christensen and Mooney,
1995]. The Pn velocity structure of the upper mantle beneath our study area is very heterogeneous with Pn
values ranging from 7.8 km/s along the Tanlu Fault Zone to 8.3 km/s at the Ordos Basin (Figure 13). Regional
variations in Pn velocities reflect variations both in lithosphere temperature and upper mantle composition.
Geochemical studies of xenoliths suggest that the upper mantle is refractory with whole rock Mg* values of
90-91 (blue dots in Figure 9), which also suggest relatively low V,, values in the lithospheric mantle. Although
some correlation is indicated between Pn velocity and Mg* (Figure 13), we do not observe any clear correlation
between whole rock Mg* values (which are of pure compositional origin) and the upper mantle Pn velocities
(which reflect variations in both composition and temperature) and therefore conclude that lateral variations
in Pn velocity reflect primarily regional variations in lithosphere geotherms. With low heat flow, it is not a
surprise that the Pn velocity in the Western Block is regionally up to 8.3 km/s (the northern part of the Ordos
Basin). On the contrary, the Eastern block, which has experienced extensive reworking during the Mesozoic,
has a high heat flow (~64 mW/m?), a much thinner crust, and low Pn velocity, 8.0 km/s-8.1 km/s, with the
lowest values of <7.9 km/s in the southern part of the North China Plain.

An extremely low Pn velocity (7.8—-8.0 km/s), unusual for Archean cratons, is observed along the Tanlu Fault
Zone. Mantle xenoliths from a depth of <60 km in Cenozoic basalts (16-2 Ma) within the translithospheric
Tanlu Fault Zone have whole rock Mg* values of <90 (red and green dots in Figure 13) and suggest fertile
mantle which may partly explain the low Pn velocity [Xu et al., 2000; Zheng et al., 1998, 2007]. Petrologic and
geochemical data based on xenoliths in the Tanlu Fault Zone and the nearby area indicate that the lithospheric
mantle is a mixture of the Archean-Proterozoic lithospheric mantle and Phanerozoic accreted material that
has replaced the Archean lithospheric keel.

Similar to the Tanlu Fault Zone, the uppermost mantle of the northern and central parts of the Trans-North
China Orogen is dominated by significantly low Pn velocities. These low Pn velocities are probably caused by
the Late Mesozoic to Cenozoic basaltic magmatism [Tang et al., 2006]. Pn travel time tomography also identi-
fies low upper mantle velocities beneath the Tanlu Fault Zone and the Trans-North China Orogen as well as a
relatively high Pn velocity beneath the northern part of the Ordos Basin.
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Figure 14. (a—d) Histogram of average Moho depth from different parts of the orogenic belts compared with the results
from CRUST 1.0 and receiver function studies.

4.2. Surrounding Orogenic Belts
4.2.1. Moho Depth

We observe a strong difference in the structure of between the crust of the Sulu Belt in the east and the
Dabie-Qinling and Qilian Belts in the west. According to geochemical studies, these Paleozoic-Early Mesozoic
orogens contain diamond-bearing eclogite and coesite-bearing eclogite.

In the Sulu Belt the average crust is ~31 km thick and it is only slightly thicker (~36 km) in the Dabie Belt
(Figures 3 and 14). These values are significantly smaller than global averages for the Cenozoic orogenic belts
(Figure 15). We note that a similar crustal structure is typical of the Paleozoic Caledonides and Variscides in
Europe [Aichroth et al., 1992; Artemieva and Thybo, 2013] where the lower crust and the lithospheric man-
tle may have been delaminated [Artemieva and Meissner, 2012, and references therein] and of the Paleozoic
Appalachians [Tesauro et al., 2014, and references therein]. We therefore conclude that a thin crust beneath
the Paleozoic-Early Mesozoic orogens of eastern China may be the result of lithosphere delamination caused
by the Mesozoic Pacific subduction. However, because we cannot know the composition of the sub-Moho
mantle, it is also possible that eclogite facies of crustal origin are present beneath the Moho.

The Dabie-Qinling orogen has a clearly different crustal structure beneath the Dabie Belt in the east and the
Qinling Belt in the west. The difference in average crustal thickness amounts to ~10 km (Figure 14), with some
difference in average crustal V,,. The Qinling orogen has an average Moho depth of 45 km which is larger than
in the Phanerozoic orogens of Europe and North America.

Further to the west, the Qilian Belt at the northeastern margin of the Tibetan Plateau has a much thicker crust,
up to 51 km on average, with regional variations between ~44 km and 58 km. Similarly, thick crust (down to
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Figure 15. Topography versus Moho depth in the orogenic belts.

~60 km) is typical of the Paleozoic Uralides orogen preserved in the continental interior [Artemieva and Thybo,
2013, and references therein], but the mechanisms for making, and particularly for preserving, such thick crust

may be different.

There is a strong linear correlation between the Moho depth and topography in all of the orogenic belts
(Figure 15), which suggests a strong role of crustal Airy-type regional isostasy. This correlation is particularly
strong for the Dabie-Qinling orogen which is close to isostatic equilibrium. We note that the slope of the cor-
relation is different for the Dabie-Qinling (free-air gravity anomaly ~—20 mGal) and the Qilian Belts (free-air
gravity anomaly range from —150 mGal to + 150 m@Gal), steep for the former and more gentle for the latter,
indicating significant variation from regional isostasy in average crustal density along the orogenic belt. For
the Sulu Belt the correlation between the Moho depth and topography is weak and indicates significant

compositional heterogeneity of the crust.
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Figure 16. Crustal seismic velocity sections of the orogenic belts, compared with the global and regional averages for
orogenic belts. (a) Qilian Belt, (b) Qinling-Dabie Belt, (c) Sulu Belt, (d) global average for orogenic belt [Christensen and
Mooney, 1995], and (e) crustal structure model for Qinling from Gao et al. [1998].
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4.2.2. Thickness of the Crustal Layers

The sedimentary cover is ~3-4 km thick in the entire orogenic belt. The thickness of the upper crust ranges
from 15 km to 25 km in the Sulu-Dabie-Qinling Belt and from 20 km to nearly 30 km at Qilian. The upper crustal
P wave velocity is low (<6.05 km/s) at the central Qilian Belt and the Qinling Belt (Figure 8a). The middle crust
thickness varies between 10 km and 20 km at the Sulu-Dabie-Qinling Belt and between 16 km and 24 km at
Qilian (Figures 7 and 16).

The Sulu Belt and the Qilian Belt have low P wave velocity (<6.55 km/s) in the middle crust (Figure 7b). The
lower crust thickness ranges from nearly zero in the Sulu Belt and the Dabie Belt to ~5 km in the Qilian Belt
and suggests lower crustal delamination or metamorphism. The V, of the lower crust ranges from 6.80 km/s
in the Qilian Belt and the northern Sulu Belt to 7.00 km/s in the central Sulu Belt (Figure 7c). The absence of
a substantial high-velocity lower crustal layer suggests that there is no eclogite/garnet-granulite in the lower
levels of the crust, but it does not exclude the presence in the uppermost mantle below the seismic Moho.

The correlation between Moho depth and thickness of the middle crust in the orogenic belt is relatively strong
(Figure 17), while the upper crust and lower crust show weaker correlation in thickness with the Moho depth
than the middle crust. This is similar to our observation for the North China craton in general. This observation
may indicate that there has been reworking of both the upper crust and the lower crust, whereas the middle
crust has been left relatively unaffected by these processes. Alternatively, middle crustal flow can be a major
accommodation mechanism for the tectonic stresses.

5. Correlation Between the Moho Depth and Topography

Near-zero free-air gravity anomalies in the North China Craton indicate that this region is at almost complete
isostatic equilibrium. Therefore, the topography is mostly controlled by lithosphere (crustal and mantle) thick-
ness and density. A relatively strong correlation between Moho depth and topography (Figure 18a) suggests
that the topography in the Western Block is mostly controlled by the crustal isostasy.

In the Eastern Block, we do not observe any correlation between the Moho depth and topography in the North
China Plain (Figure 18b). As the region is isostatically compensated (free-air anomalies are 0 to +20 mGal) we
speculate that upper mantle heterogeneity and/or lateral density variations in the crust control the topogra-
phy and the low topography may be caused by the presence of eclogitic crustal below the seismic Moho.

We observe a linear correlation between the topography and the Moho depth in the Trans-North China Oro-
gen with a correlation coefficient of R? = 0.44 (Figure 18c). The free-air gravity anomaly ranges from —120 mGal
to +120 mGal but the average is ~—20 mGal, suggesting an overall isostatic equilibrium in the Trans-North
China Orogen, which should be essentially achieved through a combination of Airy-type compensation and
variation in crustal and mantle density. However, the small slope, as for the eastern block, may suggest that
other mechanism than crustal isostasy contributes to topography.

In the Western Block, the linear correlation between the topography and the Moho depth in the Ordos Basin
is relatively strong with a correlation coefficient of R? = 0.47 (Figure 18d). Approximately +30 mGal free-air
gravity anomalies in the basin indicate that it is close to isostatic equilibrium. Our results demonstrate that
Airy-type compensation plays an important role in regional isostasy (Figure 18d). In contrast to the orogens
of the Eastern NCC, where the Moho depth and the topography are almost anticorrelated, no correlation is
observed in the Khondalite and Yinshan orogens of the Western Block. We note that the Khondalite Belt and
Yinshan Belt are not in isostatic equilibrium.

6. Geological Implications

The Archean crust of the NCC has undergone complex reworking by a large number of tectonothermal events,
such as Paleozoic (~480 Ma) kimberlitic magmatic activity, Paleozoic (~440 Ma), and Early Mesozoic (~220 Ma)
subduction and collision with the Yangtze block at its southern edge and Late Mesozoic (~135-115 Ma with
a peak at ~120 Ma) widespread volcanism and intensive lithospheric extension.

Along the southeastern margin of the North China Craton with Moho depth <32 km, the discovery of eclogite
xenoliths in the Mesozoic (~132 Ma) host rock of the NCC suggests that the crust beneath this area has been
at least ~45 km thick in the Mesozoic [Xu et al., 2006]. Presently, the crust is only 30-32 km thick along the
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southeastern margin and has a sharp and flat Moho, similar to the Kaapvaal Craton [Youssof et al., 2013] and
Variscan Europe [Artemieva and Meissner, 2012]. Lower crustal xenoliths in the Cenozoic basalts from the sur-
rounding areas consist of garnet-free granulite which is consistent with a Moho depth of ~30 km [Huang et al,,
2004] as indicated by seismic data. The shallow Moho together with the presence of high Mg* diorite [Liuetal.,
2012; Xu et al., 2006] indicate that delamination may be the cause of the thin crust or that the sub-Moho mate-
rial to a depth of at least 45 km still consists of granulite in eclogite facies as has been proposed for Variscan
Europe [Mengel and Kern, 1992]. The latter option may explain the presence of the deep sedimentary basin in
this region as caused by isostatic subsidence due to formation of a high-density eclogitic crust.

In the northern part of the Eastern block, seismic data indicate a 30-36 km thick crust in the Yanshan Belt
(Figure 3), but the presence of widespread Mesozoic adakitic rocks in this region has led to suggestions of
thick (>50 km) crust during the Late Mesozoic (adakites require high-pressure partial melting) [Zhang et al.,
2008], which is consistent with the delamination model [Gao et al., 2004] and with the presence of eclogites.
However, the most recent trace-element modeling suggests that the melting depth of the Mesozoic adakitic
rocks in the Yanshan Belt is between 33 km and 40 km [Ma et al., 2015]. These values are consistent with
the seismic data and the NCcrust model, which show that the average Moho depth in the Yanshan Belt is
32-35 km and therefore does not require that a thick Mesozoic crust should have been delaminated.

7. Conclusions

We present a new compilation of the crustal structure (NCcrust) of the North China Craton and the surround-
ing area based on all publicly available regional and local controlled-source seismic models and receiver
function studies. Analysis of the crustal structure based on the NCcrust regional model shows the following:

1. There is a systematic increase in the total crustal thickness from east to west. We explain the presence
of a thin (30-36 km) crust in the eastern North China Craton by tectonic processes related to the Meso-
zoic Pacific subduction, and lithosphere reworking and delamination, or possibly the presence of ecologite
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facies crustal rocks below Moho. Our conclusion is supported by the absence of a lower crustal layer in this
part of the North China Craton. In contrast, the crustal thickness up tp 52-56 km in the Western Block of
the North China Craton, which is similar to the crustal thickness of the East European and Siberian cratons,
may indicate the presence of preserved Archean crust.

2. The sedimentary cover in the NCCis 2—6 km thick. The deepest basins are the Ordos Basin and the northern
part of the North China Plain (5-6 km). In the southern part of the North China Plain and in the northern part
of the Trans-North China Orogen, the thickness of the sedimentary covers is only 2 km. There is a systematic
westward increase in thicknesses of individual crustal layers. The thickness of the upper crust ranges from
10 km with P wave velocity of 6.05 km/s near the coast to 24 km with P wave velocity of 6.20 km/s in the
Western Block. On average, the middle crust is ~10 km thick although it is up to 22 km thick in the Western
Block with a relatively sharp east to west transition. The lower crust is almost absent (<2 km) in the Eastern
Block as well as in the Trans-North China Craton, while in the Ordos Basin the lower crust is 6 km thick. We do
not observe any correlation between the average crustal velocities and the crustal thickness. For individual
crustal layers, the thickness of the middle crust is best correlated with the Moho depth, and we speculate
that viscous flow in a rheological weak middle crust essentially controls regional variation in the crustal
thickness.

3.The Pn velocity of the uppermost mantle is very heterogeneous with values ranging from 7.8 km/s to
8.2-8.4 km/s. Low Pn velocity (7.8 km/s) is observed along the Tanlu Fault Zone where it might indicate
deep reaching faulting and in the northern-central part of the Trans-North China Orogen where it may be
related to Mesozoic magmatic activity. High Pn velocity (8.3 km/s), typical of Archean cratons, is characteris-
tic of the northern part of the Ordos Basin, whereas the southern part of the Ordos Basin has low Pn velocity
(8.0 km/s).

4. The distribution of the crustal thickness in the Paleozoic-Mesozoic orogens at the southern and eastern

margins of the NCC is clearly bimodal. Thin (30-35 km) crust is typical of the orogens in the east (the Sulu
Belt and the Dabie Belt), while thick (45-58 km) crust is characteristic of the Qinling and Qilian Belts in the
west. We attribute thin orogenic crust to crustal delamination related to the Mesozoic Pacific subduction,
similar to the Paleozoic Variscan and Appalachian orogens. However, it is possible that the seismic Moho
marks a phase change from mafic into eclogitic phases. We find that the crustal structure of the Sulu-Dabie
Belt is similar to the Paleozoic European Caledonian and Appalachian orogens, while the thick crust of the
Qilian Belt resembles the crust of the Paleozoic Ural Mountains. The UHP metamorphic belt is expressed by
a relatively high velocity (8.1 km/s) Pn anomaly.

5. There is an overall linear correlation between the Moho depth and topography for almost the entire North
China Craton (R =0.64). However, no correlation is found for individual tectonic provinces in the Khondalite
and Yinshan orogens of the Western Block and the North China Plain of the Eastern Block. In contrast,
a strong linear correlation between the topography and the Moho depth exists in the Trans-North China
Orogen, and the Ordos Basin of the Western NCC, suggesting an important role of an Airy-type compensa-
tion in regional isostasy.
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